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THE USE OF SHRINKAGE TECHNIQUES IN
THE ESTIMATION OF ATTRITION RATES
FOR LARGE SCALE MANPOWER MODELS

R. R. Read

Department of Operations Research
Naval Postgraduate School
Monterey, CA 93943-5000

Abstract

This report summarizes the research to date performed by the author
and his students on the use of modern multiparameter estimation tech-
niques in the building of an attrition rate generator in support of the USMC
Officer Planning and Utility System (OPUS). Three main areas are identi-
fied: The cell aggregation problem; the specifics of parameter estimation;
the need to match forecasting techniques to the specific application. Most
of the effort has been in the first two of these areas and much has been
learned. The aggregation problem, i.e., the grouping of personnel cells into
an appropriate number having common size and attrition behavior, has
emerged as the most important problem that requires immediate atten-
tion. Its resolution is expected to lead to a clear policy for multiparameter
estimation. Estimation and forecasting are both impacted by the nature of
the data base. It is likely that specific applications will use differing data
bases and differing statistical techniques as well.
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EXECUTIVE SUMMARY

The author and his students have been working with a number of modern p
techniques applied to the problem of estimating attrition (leave the service) rates

for the numerous cells that appear in manpower planning models for the USMC

officer corps. Special attenion is given to the "small cell" problem; that is, officer

categories that normally contain but a few personnel. These cells are numer-

ous and historical empirical rates for them are generally quite unstable. This

report will summarize what we have learned to date, and outline the research

continuation plans.

Work that has applied shrinkage type estimators to the problem of estimating

officer attrition rates has been reported in [22,50,571. The methods tested have

been successful in the comparative sense. That is, they perform better than the

raw historical rates that might be used in an ad hoc fashion. But their behavior

in the absolute sense still has erratic aspects. Moveover we do not have a solid

way to anticipate the areas of unstable performance.

The recent acquisition of a much more refined date tape and the theses by

Larsen and Dickenson [38,22] have lead to greater insight to this problem. In

particular the new data covers ten years, breaks out officer grade by above zone

and in or below zone, regular and reserve, unrestricted and limited duty, etc.

The thesis by Larsen identifies the important break points in the YCS (years

of commissioned service) scale and some MOS (military occupation specialty)

categories that must be treated separately. The thesis by Dickinson, in addition

to pursuing some isolated details that had been treated presumptuously in earlier

work, introduces an empirical Bayes method that appears to be doing a better

job of shrinking the raw estimates. It seems to manage better the unevenness of

the cell inventories. Finally, some of our problems have also been experienced

by Carter and Rolph [131 so we propose to pursue their suggestions as well.

Our studies have led us to believe that the most important item in the

continuation work is the aggregation problem. This problem has two aspects:

2



(i.) The grouping of cells into communities of homogeneous attrition

behavior.

(i.) The combining or amalgamation of cells in order to meet min-

imal cell inventory requirements.

This need involves some exploration of the data. Because of the cumbersomeness

of the data extraction problem, it will be necessary to make wise choices and

study the most germane collections of cells.

Based upon the results of Carter and Rolf, we anticipate that an adequate

solution to the aggregation problem will lead to a clear policy for attrition rates

generation. Once this is accomplished, we can turn to the specific needs and

idiosyncrasies of the various application models. This will include questions of

both short term and long term forecasting.

1 INTRODUCTION

In recent years, the Marine Corps has been phasing its manpower management

into a centrally organized and computerized Officer Planning and Utility System

(OPUS) [15, 16,17,18,19,201. This system contains a number of planning models

and such models are affected by three general factors: existing inventory (per-

sonnel), projected losses, and projected gains. In order to project the inventory

into various future time periods, it is necessary to use a realistic system of flow

rates. Some of the rates are under administrative control, such as promotions,

job assignments, and of course everyone acquires longevity with the passage of

time. The attrition flowrates, however, can be anticipated only in a statistical 94

sense. By attrition we mean leaving the service for any reason (e.g. resigna-

tion, discharge, disability, release, retirement) and the circumstances that lead

to these attritions are not under the control of the planner. (Note: Some attri-

I ov Fortions are voluntary and some involuntary. For general purposes we assume the

planner is not cognizant of the involuntary losses.) DTIC TAB El
IUnannounced E

3 Justiflioation

!By -. . .- -
Distribution/

Availability Codes
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Our role in support of OPUS is to develop useful attrition rates so that

losses of this type can be reasonably estimated. Obviously, the replacement lead

time for planning is seldom small; most replacements ascend into the service

as young lieutenants; augmentation from the reserves is also used. The cost of

poor planning is great. Too many planned replacements lead to under utilized

personnel; too few lead to jobs unfilled and the inability to function as required.

The purpose of this report is to gather and summarize what we have learned

about attrition rate generation as it pertains to the USMC officer corps; to

describe the work in progress; to outline ways to study forecasting methods that

can serve the individual needs of the various models. Thus sponsors and others

are given current appraisal. This report also serves as a working document for

students and other researchers. The terminology and notation are standardized.

The report is organized as follows: Following this introduction we lay the

base in terms of details of the problem description, notation, conventions, data

structure and estimation methods. This section will also include a number

of satellite issues including a discussion of the measures of effectiveness and

the validation techniques. Section 3 contains summaries of the seven theses

[1,22,34,38,50,57,581 that have been written in support of this project and dis-

cusses how they integrate towards the common goal. Section 4 is devoted to

a brief discussion of futuristica. It appears important that the researchers fa-

miliarize themselves with the needs of specific user manpower models. Data

structures and forecasting methods should be tailored for them.

2 PROBLEM DESCRIPTION, ISSUES, DETAILS.

A. General Structure and Notation

For the macro view it is convenient to think of the officer "cells" as the

result of cross classifying according to grade (GR), military occupation specialty

(MOS) and length of service (LOS). It will be seen later that further refinement

4
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is useful and sharpens the results. (This will be discussed under Data and

Conventions.) Some of these cells are large (i.e. have large personnel inventory),

e.g. the grades of first lieutenant or captain with 3-7 years of service and in the

combat arms occupations. Those familiar with the Corps realize that there

are many, many small cells. The GR factor has a pyramid structure; fewer

officero in the higher grades. Of course, GR is well correlated with LOS, but

not sufficently so that one of them can be removed from consideration. (Also

LOS is closely correlated with YCS, years of commissioned service, and there

are instances for which this distinction is important.) Under MOS we have

considerable variability in that many officers are designated as qualified under

several job codes. Some of the codes are robust in that there is a reasonable

level of transferability; i.e. with a modest amount of training, an officer can

transfer from one job to another. Other codes have high training costs or high

levels of specialization; e.g. the aviation communities, and attorneys. Such

considerations are very important to the manpower planner. They also impact

upon the way that we build an attrition rate generator because the stabilization

of rates for small cells will depend upon our ability to gather together small cells

that have a communality of characteristics.

The time flow of personnel through the system involves gaining a year on

the LOS scale each year, periodic advancements (or not) in GR, and changes

in MOS (responsibilities increase with experience). The USMC normally has

between 18,000 and 20,000 officers. Although there are dependencies in the

cell flows we are not prepared to include them in the modeling process of the

attrition aspects of such a large system. Instead, a binomial distribution model

is adopted. Further we presume cell to cell independence. The impact of the

independence assumption will be softened by the way that we aggregate cells,

and by the estimation technique.

Although the cells are most numerous and their specifications are the result

of cross classification, for purposes of study and development we assume that
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homogeneous subsets of cells have been identified and, within each, they are

placed in a lineal set. The letter k is used generally to represent the number of

cells in a set; the letter T represents the number of years data to be used in the

estimation process. Thus for i= 1,...,k and t 1,...,T, let

Ni(t) = inventory of cell i in year t; (1)

Y,(t) = number of attritions in cell i in year t . (2)

Basically the raw empirical attrition rate for cell i is the maximum likelihood

estimator (MLE)

Pi= ( t)~) / j ( t(t)) (3)

This works well for large cells, but not for small ones. (E.g. The information in

0/5 is considerably different from that in 0/500, yet the MLE is the same.) The

overall attrition rate for USMC officers averages about 10% in recent years. Thus

our statistical "small cell" problem is compounded by a "low rate" problem.

The overall strategy for addressing our problem has two main aspects. They

will be called the aggregation problem and the shrinkage method problem. There

are a rather large variety of ways to manage each and it appears that they cannot

be treated in isolation, but must be managed together.

The aggregation problem was stated earlier and we repeat it now. We have

spoken of collections of homogeneous subsets of cells that possess a communality

of behavior with respect to attrition. For our purposes we must emphasize two

facets to this problem:

1. The identification of adequate numbers of cells whose inventory personnel

are likely to have common attrition behavior.

2. The grouping together or amalgamation of the small cells in the aggre-

gate into super cells whose inventory values meet minimal requirements,

specified by the user.
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Previous rate generators have been concerned only with 2, because I has no

role if one uses historical rates. The advantages of shrinkage methods comes

from the use of information contained in similar cells. The key is to identify the

similar cells. Hence, item 1 is included in our aggregation problem.

The shrinkage method problem is involved with procedures which, for a given

aggregate, must choose a single central rate for that aggregate and shrinkage

factors which shrinks the cell MLE, Aj, towards the central value by an amount

equal to that cell's shrinkage factor.

In the work to date the shrinkage problem has received the greater atten-

tion [22,50,57]. In the last decade or two the statistical literature has displayed

many papers on shrinkage methods for multipararneter estimation problems.

The results, in the light of applications, have been startling and glamourous,

see e.g.[13,27,29]. Naturally, it has been more exciting (and easier) to try these

methods on our attrition rate problem using ad hoc, but defensible, cell aggre-

gations.

On the other hand the aggregation problem has not been totally ignored.

But it has proved to be more difficult, largely because of the cumbersome data

handling problems. The theses by Elseramegy and Larsen [1,38] have dealt with

this problem. An important observation by Carter and Rolf [13; 882-3] is that the

inventory numbers for the cells in an aggregation should not be highly variable.

This principle was not used in choosing the ad hoc aggregates mentioned in the

preceding paragraph.

Returning to the question of shrinkage methods, there is an important gen-

eral point that should be made at this time. Most of the methodological de-

velopment has used the mathematical setting of independent normal random

variables with common variance, see e.g.[22,23,24, 26,27,36]. Moreover, several

applications [13,27] have been successful using binomial data which has been

transformed to behave more like normal data. Thus our approach to shrinkage

estimation has followed this lead and has three steps:
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1. Transform the raw cell data via the Freeman Tukey transformation [27,301.

2. Apply the shrinkage method to the transformed data.

3. Invert the results to the original scale.

The Freeman-Tukey transform is an enhancement of the basic arc sin trans-

form for binomial data which is designed to give more stability to the variance

and make the distribution closer to normal. The form that we have been using

is (dropping the cell and time affixes)

X 1 v/NR47 5arc sin 2 Y - 1 +arc sin 2 Y + 1 (4)
2 1 N+1 / N+1/J

where N is the cell inventory and Y is its leaver count. This form appears to be

different from the more customary

+ .5jarc sin + arc sin . (5)

Both have variance approximately equal to one. Because of the identity

sin-'(2p - 1) - 2sin-(V -) - r/2, (6)

they are effectively the same, differing only by the term (v'W7-) v/2. The

former was chosen for use because it circumvents the computation of a large

number of square roots. The shrinkage process is applied to the data X of

eq.(4) after averaging over time and developing a collection of these values for

all the cells in an aggregate. This is described in detail in the subsection C.

There are also questions of detail concerning how to invert the result. These too

will be deferred. For now, it suffices to recognize that the transform (4) is an

average value for

VT- arc sin(2p - 1) (7)

and if X ° is the shrunken value for X then the shrunken value for p will look

8
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like

= o if X' < (-r/2) N .5

= 2 {1 + sin (X*/V~W77.) otherwise (8)

= 1 if X" > (?r/2)VrN -+.5

A number of notational conventions have been adopted during the course of

the project. They are used both separately and in concert. We conclude this

subsection with a listing of them

TS transformed scale MO mean overage
OS original scale MU mean underage
ML maximum likelihood MAD mean absolute deviation
JS James - Stein SSB sum of squares between groups
LT limited translation SSE sum of squared errors
EB empirical Bayes GR grade
MOS military occupation speciality OF occupation field
LOS length of service YCS years of commissioned service
LDO limited duty officer UNR unrestricted
MOE measure of effectiveness FOM figure of merit

B. Data. Conventions

The orginal data tape supplied by NPRDC contained data for seven years,

1977 thru 1983. It was possible to identify 10 grades (warrant officer 0-3, second

lieutenan, colonel), 31 LOS levels (0 - 30 years with the final one being 30 or

more), 40 MOS levels (actually OF, the first two digits of the four digit MOS),

and 8 loss types. Details appear in [57]. This was the data base used in the

theses [1,34,50,57,581.

A more extensive and refined data tape was received in the summer of 1987.

It contained 10 years of data, 1977 thru 1986. For a complete description of the

refinements see [381. For our immediate purposes it suffices to point out that

LOS is replaced by YCS (31 cells); GR is further broken out by UNR/LDO and

" ' € ..... 9



the failed select (to promote) are separated from the others; full MOS codes are

available; commissioning source (15 levels); eduation (4 levels); regulars can be

separated from reserves.

It is important to draw attention to the distinction between central and

transition data. See [3; p24]. This impacts upon the way that the data are used.

For the earlier tape mentioned above, the cell inventories refer to specific dates

(or "snapshot" data). It is the number of occupants of the cell at the beginning

of the fiscal year. On the other hand, the attrition counts for a cell contain the

number of leavers at any time during the year. If an officer changes cells during

the year and then leaves, the attrition is credited to the cell occupied at the

time of leaving, not the cell that credits him for inventory. As an extreme case

of this situation it is possible for a cell to contain zero inventory and yet record

several leavers.

For this reason the following convention was adopted. First the cell inventory

is replaced by the average of the beginning and end of year inventories. (Note:

this is possible for all years save the last, which must use only the initial figure).

Second, the central inventory is defined to be the larger of the average inventory

and the number of leavers. In this way we are assured that Y < N and these

are the Ni(t) values used in all formulas.

For the refined data tape, a different situation exists. The inventory figures

are recorded in units of man-quarters. In this case, for our yearly analysis, we

use the man-quarter figure divided by four in all formulas.

C. Concepts of Shrinkage Estimation: Heuristics

Perhaps the most familiar setting for describing this idea is that of one way

analysis of variance (ANOVA). Consider independent random variables {Xj}

and the distributional model

10



The goal is to estimate Stein [53] has shown that the obvious

estimators

Xi x. i k (10)

are inadmissible using the average squared error loss function
1k

L(M,,6) = [,- (1l)
1

where the 6i = bi(x) are the estimating statistics. That is, he constructed

functions 6i(x) 5 Xi that have smaller values of L; i.e.
k k [ ]

and the dominating functions, {6i} are convex combinations of the {X,} and the
k

grand mean X = ,. That is
I

8, = (1 - sh)X, + sh-

(12)
= +(1 - sh) (Xi - X). 12

where Ah is the (yet to be specified) shrinkage factor. Equation (12) provides

the structure for all estimators that utilized fixed shrinkage toward the grand

mean.

Heuristically, we would want the shrinkage factor to be larger (close to unity)

when the {Ai} are nearly all the same; i.e. the departures of the 6, from the grand

mean should be small. By way of contrast, if the Ai are highly variable then the

{8 i} should not shrink very far from the group means, {X}. The traditional

analysis of variance technique provides a way of measuring the relative variability

of the Ai and, from this, a value for the shrinkage parameter can be produced.

The ANOVA table customarily produces the two sums of squares

SSB = nE (Xi -
1!

(13)
n-

SSE = JZZ (xii - )



The former, sum of squares between groups, is proportional to the sampling

variance of the {Xi} and the latter, sum of squared errors, is proportional to the

estimator for o2. Thus shrinkage should vary inversely with the ratio SSB/SSE. P

The recommended scaling is

{ (k -3) SSE
sh = min (k(n -"1) 2  S ' (14)

[50,eq.3.22] and [24,eq.(7.7)]. This form is equivalent to the use of the positive

part of (1 - sh) which has been shown to improve upon the original James-Stein

shrinkage, [26]. It will occur to some that a much simpler procedure is available

by merely performing the ANOVA test for H, : M1, = MU2 = ... = ,&. If we accept

H., then use 5i = Xi for all i and otherwise use 5, = X . This "testimator"

procedure is also inadmissible, [51].

Multiparameter estimation methods that shrink the individual group esti-

mators toward some common central value have appeared rather extensively

under the names of Bayes or empirical Bayes procedures. Such procedures uti-

lize some model enhancements for the data gathering process and these need

to be reviewed in the light of each particular application. Since our applica-

tions involve binomial and multinomial probabilities, the reader is referred to [6;

Chp.12] for methods and applications. For our application, a brief pilot study

was made using these methods for the multinomial probabilities of the various

attrition types. The results did not appear promising and we returned to our

original course.

From a theoretical point of view we are engaged in an interesting conundrum.

Having adopted the model of a large number of independent binomial cells, we

know that there can be no Stein effect because the maximum likelihood estimator

is admissible. This is true both for squared error los [35] and the "chi square

statistic" loss function, [48; p284]. Thus the justification of using shrinkage

appears to come from the empirical Bayes arena. Yet our first attempt to use

empirical Bayes directly was not at all encouraging.
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The following is our interpretation of the riddle. The developed empirical

Bayes procedures use beta function (or Dirichlet) prior distributions. These are

the conjugate priors that facilitate the calculations. It is known that this sub- S

family does not perform well compared to maximum likelihood estimates when

the cell probabilities are extreme (close to zero or one). Thus our lack of success

is probably due to the fact that the attrition rates are small: overall longterm

average of about 10% per year. Thus our encouraging results are credited to

the idea that the basic strategy (transform, shrink, invert the transform) cor-

responds to an empirical Bayes procedure in an implicite way, see [211 for a

general discussion. Others have had success doing this with a binomial setting, 4

113,27]. The fact that the binomial distribution is well approximated by a nor-

mal distribution, surely plays a role. Also, one should consider the thoughts of

Berger,[5].

Lastly, we must keep in mind the weaknesses of our model. Perhaps the

most important point here is the unlikelihood of year to year stationarity. The

ultimate validation must somehow model and make reasonable allowances for

these temporal changes. The mixing of "snapshot" and central data is also a

problem, but we believe this is largely one of noise rather than one of structure.

The independent cell binomial model, although thought to be robust, could be

improved upon using general flow models. These latter models would be much

more cumbersome to use on such a very large scale.

D. Loss Functions. Measures of Effectiveness. Validation

Several loss functions or measures of effectiveness (MOE's) have been applied

in this project. Each serves its own purposes. A disquieting aspect of the

research to date has been the fact that an estimation technique that works well

with one MOE may make a poor showing using another one.

Initially we applied the James-Stein estimator. This estimator was designed

13



to perform well for normally distributed data using the squared error loss func-

tion 1(15
L(b,.)- (b - ',)2 (15)

where 6 - ( bk,..., 6k) are the estimating statistics and IA = (I,,... , k) are the

means to be estimated. (For validation purposes pi is replaced by the trans-

formed data for the ith cell during the validation year). Thus, this MOE was

used to compare estimating schemes in the transformed scale, that is, after

transforming and shrinking, but before inverting the shrunken estimates back

to the original scale. These MOE values are identified by the words "transformed

scale" (TS) squared error loss. They serve the purpose of measuring how well

the "shrinkers" are performing compared to that specified by the supporting

theory. The transform is scaled to produce a variance of unity, so we are looking

for values of L near one.

Since the manpower planner cares little about performance on the trans-

formed scale, and does care greatly about performance on the original scale,

comparisons were also made using chi square statistics:

X4)k) ( - eP) (16)

where ei = estimated number of attrition in the ih cell; ai = actual number of

attritions in the i'a cell for the validation year; nj = inventory for the i0 cell

in the validation year; pi = e,/ni. If the model is correct and the estimators

are doing their job, this measure has a chi square distribution with k degrees of

freedom. This fact means that its expected value is k, its variance is 2k, and an

absolute standard is available. There is a deceptive point, however. In a number

of instances there are cells with non zero values for aj and yet the maximum

likelihood estimator, pi, is either 0 or 1. In such cases the denominator of (16)

is zero and the MOE cannot be computed. Rather than allow the information

from the entire aggregate to be lost, we adopted the expedient of truncating the

number of cells; k is reduced to k' (the number of useable cells) and the MOE

14



is computed and printed. This expedient has the effect of giving an unnatural

advantage to the maximum likelihood estimators. The reader must interpret the

results in the light of this point. No such truncation is applied for the competing

shrinkage estimators, so comparisons become more difficult.

Discussion with NPRDC personnel over the MOE questions raised the issue

that the chi square MOE is really a weighted squared error loss MOE that was

chosen for its statistical properties. A measure is needed that is of more direct

service to the manpower analyst. These thoughts have led to the recognition

that (i) an average magnitude of errors is more useful, and (ii) the cost of over-

estimating is not the same as the cost of underestimating even if the magnitudes 6

are the same. Since actual costs are not available and are likely to change among

the aggregates, we adopted a general purpose method that allows the user to

consider the magnitudes of underage and overage separately:k ik

MO = -(e -ai) +  MU = ko(ai - e,) +  MAD MO + MU (17)
1 1

when MO stands for mean overage; MU for mean underage; MAD for mean

absolute deviation; and the plus superscript denotes the positive part.

Unlike the previous two MOE's, we have no theoretical way to judge the

adequacy of estimation schemes using (17). Thus one should prepare to compute

some empirical savings figures. Letting e,(c) denote the attrition estimates for

the i th cell using current methods; ei(*) for proposed methods; and using these

values to produce MO(c), MO(*), MU(c), MU(*) one can then compute some

relative savings figures

MO(*)/MO(c) and MU(*)/MU(c) (18)

in order to make judgments about proposed procedures.

In summary then, we are looking for transformed scale loss figures of about

one, original scale chi square figures of about k, and the best looking set of

ratios for savings in underage and overage without having any absolute figure

as a goal.
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The details of validation require that designations be made for which data

are used for developing the attrition estimates, e, and which are reserved for val-

idation to provide the actuals, a. In the earlier works, it was arbitrarily decided

to use the first four years (77-80, first data tape) for estimation and the last

three (81-83) for validation [22,50,57]. The results indicate that the validation

for 82 and 83 (two or more years into the future) are uniformly poor. It was

concluded that there must be a time series effect and that questions of forecast-

ing must ultimately be faced. More importantly, it was decided for immediate

work to base all comparisons and conclusions upon the 1981 validation figures,

(one year into the future).

A complete cross validation [28,55] is being planned for the empirical Bayes

estimator, [Section 4.2]. The more refined (ten years) data tape will be used

and each estimation calculation will use nine years of data. That is, each of the

ten years will be taken out successively, case by case, for validation use while

the remaining nine are used to develop the estimators. This is what we mean

by a complete cross validation.

3 THESIS SUMMARIES

Seven Master's theses have been produced by this project. Each has made

important contributions to the understanding of the problem. A brief suummary

of each will be given in this section, but the emphasis will be largely in terms of its

bearing upon our two main problems: aggregation and estimation. On occasion,

some of the important peripheral and supporting results will be mentioned, but

lightly.

1. Tucker, D.D. [571. This thesis is the initial one in the series. Major

Tucker spent his experience tour at Headquarters USMC, used this opportu-

nity for familiarization purposes, and did a superb job of obtaining background

information and laying a proper base for others to wok on the problem. His his-

torical remarks, comments on the officer planning system, promotion prospects
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by rank and coding of the structural zeroes (cells having zero inventory because

of system structure) by MOS catergory are most useful. Further, he compiled a

number of profile and other macro statistics that allow the researcher to envision

how the system works. This thesis also contains the formatting information for

the first data tape.

Major Tucker tested three estimation schemes; maximum likelihood (3),

James Stein (12) and (14), and minimax. We display the minimax estimator

here,
P - 1 + IW +] (19)

where Yi(.) and N,(.) refer to Y,(t) and N,(t) summed over the estimation yeare

Explicit values of the average loss (11) appears in Table XVII,[57, p66].

This thesis used an ad hoc aggregation scheme which specified eight sets of

officers; first lieutenants for each of four MOS groups and lieutenant colonels for

each of the same four MOS groups. The MOS groups are:

1. Aviators (one OF code);

2. Ground Combat (three OF codes);

3. Combat Support (three OF codes); and

4. Combat Service Support (all others OF codes).

[57; p15]. Also all LOS cells were included which were not structural zeros when

cross classified with GR and MOS.

The result of this study gave very substantial support to the James-Stein

estimator. The minimax estimator was deemed to be too conservative for small

cell use and was discarded.

2. Robinson, J.R. [50]. Based upon the work of Tucker, the immediate

follow on effort was directed toward giving more attention to the small cells and

a less hurried look at the basic James-Stein and maximum likelihood estima-

tors. This was undertaken by Major J. R. Robinson, who also introduced the

limited translations shrinkage alternative, we [24]; performed a more thorough
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validation using both transformed scale, eq(15) and original scale eq.(16); and

uncovered the fact that some of the arbitrary choices made earlier can have

rather deep effects. Robinson also introduced the TSCA, transformed scale cell

average, estimator.

This thesis used the same ad hoc aggregation scheme that was introduced

by Tucker, except that the catchall aggregate, Combat Service Support, was

dropped. The new TSCA estimator is computed by applying the Freeman-Tukey

transformation (4) using as input the individual Ni(t) and Y,(t), eq(1) and (2).

The resulting X,(t) is then averaged over time. To invert to the original scale,

one uses this value, call it Xi*, together with n! = time average of inventory over S

the estimation years, and applies (8). Notice how this differs from the MLE,

which averages over time prior to applying (4). Note further that TSCA may

be viewed as James-Stein with zero shrinkage.

The limited translation James-Stein (LTJS) is complicated and the reader

is referred elsewhere, [24] and [50; App.C], for details. We will however draw

attention to some of its features. The basic idea is to reduce the amount of

shrinkage in the tails of the distribution of the transformed values, Xi. This has

the effect of reducing the individual errors for the extreme cells at the cost of

(hopefully) only modest increases in total loss, eq.(11). To achieve this one is

faced with the selection of a tuning constant, d, representing the number of stan-

dard deviations into the tails that one allows for full shrinkage before switching

to reduced shrinkage. Robinson showed that this parameter, d, changed with

the aggregated set. This author also studied some very small cells, i.e. inventory

ranges (0,5) and (6,10).

The results of this thesis were sobering. First of all, the TSCA, MLE, JS,

and LTJS estimators were all competitive. This was especially striking because

in Tucker's work it appeared that JS was superior to MLE. Investigation into

this matter showed that the method of counting cells in an aggregate can have

a sharp effect. E.g. Tucker used the number of non structural zero cells whereas
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Robinson used the number of non empty cells. Thus for example, the former

used k = 57 and 48 for, respectively, ground combat first lieutenant and combat

support lieutenant colonel; Robinson's values were k = 45 and 40 for these two

groups. He also excluded the sampling zeros: cells of zero inventory because

of sampling and not because of organizational structure. This change had the

effect of returning MLE to competitiveness.

Earlier it was pointed out that MLE estimators allow values of zero and one,

both of which make (16) uncomputable. When such values are removed in order

to use the chi square measure, the values of k, for the above listed cells, becomes

35 and 23. These facts dramatize our problem of cell definition and aggregation.

It was also discovered that Tucker's version of eq.(14), [57; p55, Step 3] is

in error. In addition, Major Robinson's extensive study of the very small cells

illustrated unstable behavior. That is, performance is at variance with that

prescribed by theory. It may be better for the very small cells to be pooled

together into single, larger cells rather than be exposed to this instability.

3. Amin Elseramegy, H.[1] This thesis reports our first attempt to treat

the aggregation problem. The Naval Postgraduate School had recently acquired

the very modern and glamourous CART (Classification and Regression Trees)

program. Our plan was to try using this program to form aggregates of cells

that exhibited homogeneity of behavior with regards to attrition, [1,9].

We ran into a number of difficulties, and the effort of learning to use the

program became a major task. Our data base is much larger than that which

the CART system provides for, as installed on our IBM 3033 system. It was

necessary to partition it arbitiraily into nine sets so that each could be run

separately. Moverover, to conserve computer memory, the LOS scale was treated

as a quantitative interval scale and not as a set of categorical variables. Again

the first four years were used for estimation, i.e., learning samples in CART

parlance, and the raw attrition rate was used as the response variable.

Perhaps the point of greater import was that CART is a "top down" system.
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It starts with all of the data (that memory can hold) in a single aggregate and

goes through a succession of binary splits, each split making the most dramatic

division possible on the scale of the response variable. A stopping rule terminates

the process and the result is a binary tree. A new case can be dropped through

the tree, follow the path prescribed by the succession of splits, and come to rest

in a terminal node of the tree. That node will specify the attrition rate. This

top down approach provided us with useful break points in the LOS (interval)

scale in the earlier splits. The later splits were a mix and match set of GR and

MOS combinations that had no apparent structure. Our applications require

structure for customer oriented organizational purposes.

Thus the experience was useful in that it drew attention to the need for a

"bottom up" approach to aggregation. Some organizationally meaningful cells

should be brought together first. Then we must pool to get reasonably sized

inventory numbers before computing response variables. We also learned that

our ad hoc practice of using all (non structural-zero) LOS cells in an aggregate

is a poor one.

4. Hogan, D.L.[34] Attention had been drawn to the fact that the vali-

dation figures for time lags of two and three years were poor and not used in

the comparison of estimation schemes. That is, the values produced by the

data (equally weighted) of four estimation years produced tenable values for the

first year's validation, but not for the other two years. This lead us to believe

that there is a time series effect and Lieutenant Hogan explored the exponential

smoothing technique, [11,34] in order to treat it.

In the large, this technique provides a way to update estimates yearly with

the passage of time. It weights the recent past more heavily and discounts the

distant past exponentially using a smoothing constant, a. Also, there is an

interesting side advantage in that storage requirements are minimal.

Lieutenant Hogan worked with the four competitive estimators identified by

Robinson, and the same six aggregates. The smoothing constant a was chosen
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to minimize the MOE 's (or FOMs, figures of merit).

The results indicated that exponential smoothing does indeed give relief to

the problem of estimating rates using larger time lags. The constant 0, for 0

the various aggregates, are larger than those generally encountered in other

applications of exponential smoothing, and they are not as stable as we would

like. In particular, the aviation community has emerged as being quite singular.

5. Yacin, N.[58] In response to intradepartmental pressures, it was decided

to explore the logistic regression alternative using as carriers LOS (an interval

scale) and GR (an ordered scale). Indeed, if successful the regression approach

is preferred, [31,49,58].

Generally, but not always, shrinkage estimation methods (treating these vari-

ables as levels of two factors) perform better. The logistic regression made its

best showing for 3 < LOS < 9 and 4 < CR < 6. Perhaps the mose useful

aspects of this study are the qualitative results:

(i) For 0 < LOS < 3: attrition rates are chaotic as young officers

"test the waters".

(11) For 3 _< LOS < 9: attrition rates decline with increasing LOS as

officers commit themselves to longer second and third contracts.

One would think that advancement in grade would also correlate

with a lower rate, but we don't see that. There appears to be

other kinds of shifts influencing the attrition behavior in these

years.

(i1) For 9 < LOS < 19: the maturing career commitment has been

made and rates decline with increasing LOS and GR.

(iv) For 19 < LOS <_ 30: since advancement opportunities of the

senior officer are quite limited we see rates increasing with LOS

and decreasing with advances in GR.

6. Larsen, R.W.[38] Substantial progress in the aggregation problem was
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made in this thesis. This is the first work that utilized the second, more refined,

data tape. It contains the format for that tape. Captain Larsen presented a de-

scription of the current, dynamic (user specified threshold) aggregation method

and followed the general plan specified by it. He applied a hierarchical clustering

algorithm to the new data, see [2, 37, 38], and exposed the relative importance

of some special MOS cells and YCS intervals. The separation of the aviation

community into several groups is most revealing and undoubtedly explains much

of the instability encountered earlier when the estimation schemes were applied

to that group aggregated as a whole.

Equally important are the break points in the YCS scale uncovered by this

thesis. Thus, a new order of putting cells together is indicated; a different set

of priorities is established.

7. Dickinson, C. R.[22] This thesis also used the newer more refined data

tape. We remind the reader that this tape recorded inventory in man quarters,

whereas the previous one gave counts at the beginning of the fiscal year. This

distinction appears to have a very noticeable effect. Also, LOS is replaced by

YCS. Captain Dickinson repeated the Robinson calculations (MLE, TSCA, JS)

for the same groups and included an empirical Bayes estimator as well. The

results show that all are competitive in the comparitive sense and the MOE

numbers have greater stability than those exhibited using the other tape. Also,

they are distinctly different from the earlier values.

In addition, Captain Dickinson performed some side studies treating issues

that had been treated "out of hand" in earlier works. Specifically:

(1) Approximate and use the unequal variances on the transformed

scale.

(U1) Study of the effect of alternative inversion formulae.

(i1) Choice of inventory values for inversion of the transform.

(lv) Graphical description of non uniform shrinkage and nonlinear

shrinkage curves on the original scale.
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To elaborate, item (i) is necessary in order to develop useful empirical Bayes

estimators, [13,15,25,26,43]. Otherwise, the shrinkage is uniform for all groups

and that situation should be adequately covered using the basic James-Stein

estimator. Item (ii) deals with the question of returning to the original scale from

the transformed scale. The basic inversion, eq.(8) has been used in all earlier

studies, but some competitors have appeared in the open literature, [13,27,42).

Certainly, the FTE (Freeman-Tukey exact, Ref[42]) must be considered seriously

since the basic inversion eq.(8), is neccessarily only approximate. The problems

encountered in this area are connected with those addressed 'n item (iii). The

choice of inventory, n, to be used in the inversion varies with the group index.

This leads to the awkward condition that full shrinkage to the grand mean on

the transformed scale does not invert to a common attrition rate on the original

scale.

Turning to item (iii), the FTE was discovered by Miller, [42], who also recom-

mended the use of the harmonic mean (over time) when choosing an inventory

value for purposes of inversion. Captain Dickinson studied this question via

computer simulations using arithmetic, geometric, and harmonic means and the

small values of attrition rates that are of interest to us. The arithmetic mean

made the best showing, probably because of the small rates.

The graphical shrinkage paths, item (iv), are interesting, but not alarming.

The individual paths are smooth and appear to have monotone derivations; the

bow is not severe; straight line approximations would not be damaging.

In the eleventh hour of his work, Captain Dickinson experimented with a

weighted empirical Bayes estimator, [22, App.E]. The result is very positive and

this estimator is recommended for further study.
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4 CURRENT STATUS AND CONTINUATION
PLANS

1. Technical Insights

It has been known for a long time that the method of least squares (for our

problem this means the use of raw empirical rates) picks up too much of the

idiosyncracies of the "training" data set and leads to disappointing performance

when used for predictions. There are a number of ways for combating this,

many of them having an ad hoc flavor, and generally rather intensive in terms

of computation. The class of James-Stein and other shrinkage methods possess

very salable analytic support; their use should become wide spread.

The Elfron-Morris paper "Data Analysis Using Stein's Estimator and Its

Generalizations", [271 presents reasons why more applications have not been

forth coming. They also present three applications of the method that pro-

vide very dramatic improvements over classical methods, and serve as models

for use by practitioners. Their toxomosis prevalence rate example is especially

convincing. The data are completely real and the gains are of the order of 200

percent.

Their baseball example is a closer prototype to our application and the gains

are given as 350 percent. This certainly appears attractive. The fact that

the authors were able to practice some selectivity in this example has emerged

as a point of importance along with the natural distinctions between batting

averages, attrition rates and other aspects of our problem. We take a moment

to discuss the insights that have been developed regarding these things.

In the batting average example 18 players were selected and the results of

their first 45 times at bat were used for the estimation or training data set.

The shrunken estimated batting averages were then compared with the end of

season values, and with great success. The player selection scheme, [27; pg 312],

was driven largely by the goal of exactly 45 times at bat on certain dates; all
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rates exceded .15. Thus, all ni = n and this value is sufficiently large so that

the variance of the transform (essentially Freeman-Tukey), for .15 < p _< .85, is

constant. Moreover, this degree of selectivity also insures that there is no issue

as to how to invert the transform after shrinkage.

For the attrition rate problem the vast majority of rates are below .15, the

inventory values are seldom as high as 45 and certainly not constant. We have

no guide as to how large k (number of cells) should be other than k > 4. Our

experiences had led us to believe that unevenness in cell to cell (also over time)

inventory is detracting from the performance of our estimators. Some isolated

calculations have shown that the method of inversion, eq.(8), is an important

issue. Thus our application breaks new ground and, when completed, will make

an important contribution to the lore.

It appears that Carter and Rolph found similar issues. They state, [13, p382]

paraphrased, that the empirical Bayes estimators will perform best if applied

separately to groups (aggregates) of cells that have comparable size and similar

rates. It is extremely interesting to note that their empirical Bayes estimators

made their best performance (showed the greatest savings) for cells with low

rates. This is also the experience of Fay and Herriott, [29].

Some of the other details of this Carter-Rolph paper are not clear. The

transform inversion formula [13; pg 8821, seems to have a misreferenced origin.

As pointed out in [22] it appears to perform shrinkage towards p = 0.5 on the

original scale. Since this detail interacts with the particular empirical Bayes

method used, further guidance from this paper is not attractive.

Thus we believe that the ad hoc aggregates chosen for our pilot studies are

detrecting from our ability to discriminate among competing estimators. The

next major effort should be a hands on study of the data following the lead

of Larsen [38] and developing sensible aggregates that fit well with the natural

organization of the USMC officer corps.
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2. Current Estimation Recommendations

Empirical Bayes estimators require knowledge of the variance for each cell.

On the original scale this is given by the familiar formula for the binomial

distribution

Var(Y) = p(1 - p)/n (20)

which can change sharply with both p and n. The situation is more pleasant on

the transformed scale. Indeed the Freeman-Tukey transformation was designed

to stablize the variance at one, and it does so for the non extreme values of

p. However in our problem there are important combinations of n and p for

which the variance is smaller than one. Moreover we are fortunate in that a

single interpolatory curve has been found that fits this variance function very

well for broad combinations of n and p. Details appear in [22; App. C]; skeleton

summary follows.

Let u = E(X) when X is given by eq.(4). Then, to a very good approxima-

tion for N > 3,

Var(X) -- max(I, V(p)) (21)

where

V (p) = a(ju - i'/2)b (pj - 1 - x/2)62 (22)

Wa~il

a = 1.6835 bi = -. 8934 b2 = .9881

andp > 1.001 + r/2. (Clearly the formula breaks down for IA- 1 - r/2 negative.)

The value one that appears in (21) dominates for (about) u - ?r/2 > 2.2. The

formula (22) comes into play for N > 2, and p >_ .001, with the upper limit

given by a function of N,p; see [27].

Our policy for empirical Bayes estimation is described next. Consider a

single cell and let T be the number of years in the estimation set. Then, using
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X(t) from (4), with the argument t inserted to denote the year, let

XT(t) = X(t)//.5 + N(t) fort = 1,...,T (23)

except if N(t) = 0 then XT(t) does not exist and T is reduced accordingly.

Then form the time averages

XTB = [ZXT(t)] /T (24)

We require a single variance figure for the XT(t), denote it VT, and define it

implicitly by

Var(XTB) = (ZVar(XT(t))] /T2 -VT/T (25)

and (21) is used in the summand of (25) with p replaced by XT(t). Thus XTB

is a time average of transformed values for the cell and VT is our estimate of

its population variance.

Now the empirical Bayes value for our cell is the convex combination
A VT

XEB A XTB + XBB (26)
A+VT A+VT

where XEB, XTB and VT change from cell to cell within the aggregate; XBB

is a single central value (weighted average) and A is the variance of the prior

distribution of cell means. Both A and XBB must be estimated jointly using

an iterative algorithm. The details are next.

Let k be the number of cells, as before, and we will attach subscripts (i =

1,..., k) to previously defined quantities that depend upon the cell. We will use

Ao for the "previous" value of A in our iterative algorithm and initialize with

A = 0. First set

Ao ,-A (27)

Next define temporary values {Ci} and {-yi} by means of

k

-ii =1/(A T2
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Then compute the weighted mean

k - 1 - >a2[XTB - XBB12

A 4- A -
(8

A +A[XTB, - XBB12  (28)

Now, if the result is A < 0, set A = 0 and exit from the loop. Also if

JA - Aol < c(say 10-"), we are finished and should exit. Otherwise, return to

(27) and repeat the steps.

Having determined XBB and A, we use these values in (26) to produce

XEB,, i = 1,..., k. Notice that the amount of shrinkage changes with the cell

(i.e. VT are not necessarily all equal to one and if A = 0 then the shrinkage is

100 percent to XBB).

We pause to note that the previously tested non uniform shrinkage method

(LTJS, [501) selected cells with extreme time average values for reduced shrink-

age. The empirical Bayes method chooses cells with lower variance for dimin-

ished shrinkage.

3. Forecasting

Often, the applications involve forecasting. There are great differences among

the users as to the length of the forecast period. One application involves

monthly forecasts while, at the other extreme, another involves yearly forecasts

up to seven years into the future. The forecasting method should be tailored

to the needs of the application. These are a number of techniques available,

[7,8,10,34,41,52,56,].

Brea and Rowe (10] report success with Naval Officer attrition rate forecast-

ing using a third order auto regressive model combined with a linear program

that solves for the coefficients using MAD. But this success has diminished with

time (Rowe, personal communication) and other techniques are being developed,

[46,52]. Also, NPRDC is working with some econometric models.
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The situation is different for very near term forecasting. Seventy percent

of the yearly leavers do so in the summertime (Morton, DSI, personal commu-

nication). Often the users are experimenting with contingencies and sundry

incentive plans. For such applications, Bayesian methods could prove useful,

[7,17,34].

We have paid little attention to forecasting thus far in our project. The

two and three year validations were abandoned because of their instability. The

exponential smoothing applied by Hogan showed improvements but behaved

erratically. We believe that a quality policy for managing the aggregation prob-

lem will do much toward laying the base to study forecasting. It appears that

the blend of shrinkage estimation and multiparameter forecasting has yet to be

treated in the open literature. This presents a challenge.
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